Problem G3 from the IMO Shortlist 2017
Một lời giải mang tính chất tính toán tỉ lệ của mình cho bài này, ngoài ra trên AoPS còn những lời giải khác như: sử dụng tính chất điểm Humpty, nghịch đảo hay dùng số phức.
https://artofproblemsolving.com/community/c6h1671271p25296276
Solution.
Let



Claim 1:


This is just angle chase:



Cause we have


Therefore





Nhận xét
Đăng nhận xét